\(\int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [452]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 342 \[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \left (8 a^2 A b-8 A b^3+5 a^3 B+10 a b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^3 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A+23 A b^2+35 a b B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*a*A*(a+b*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/15*(8*A*a^2*b-8*A*b^3+5*B*a^3+10*B*a*b^2)*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x
+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+2*b^3*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1
/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)
/d/(a+b*sec(d*x+c))^(1/2)+2/15*a*(8*A*b+5*B*a)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)+2/15*(9*A*
a^2+23*A*b^2+35*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a
/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.38 (sec) , antiderivative size = 342, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {4110, 4179, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \left (9 a^2 A+35 a b B+23 A b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \left (5 a^3 B+8 a^2 A b+10 a b^2 B-8 A b^3\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 a (5 a B+8 A b) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A \sin (c+d x) (a+b \sec (c+d x))^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 b^3 B \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[((a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(2*(8*a^2*A*b - 8*A*b^3 + 5*a^3*B + 10*a*b^2*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a
)/(a + b)]*Sqrt[Sec[c + d*x]])/(15*d*Sqrt[a + b*Sec[c + d*x]]) + (2*b^3*B*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*E
llipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2*A + 23*A
*b^2 + 35*a*b*B)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(15*d*Sqrt[(b + a*Cos[c + d*x
])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*(8*A*b + 5*a*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[Sec[c
 + d*x]]) + (2*a*A*(a + b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4110

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4179

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*
m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2}{5} \int \frac {\sqrt {a+b \sec (c+d x)} \left (-\frac {1}{2} a (8 A b+5 a B)-\frac {1}{2} \left (3 a^2 A+5 A b^2+10 a b B\right ) \sec (c+d x)-\frac {5}{2} b^2 B \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {4}{15} \int \frac {-\frac {1}{4} a \left (9 a^2 A+23 A b^2+35 a b B\right )-\frac {1}{4} \left (17 a^2 A b+15 A b^3+5 a^3 B+45 a b^2 B\right ) \sec (c+d x)-\frac {15}{4} b^3 B \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {4}{15} \int \frac {-\frac {1}{4} a \left (9 a^2 A+23 A b^2+35 a b B\right )+\frac {1}{4} \left (-17 a^2 A b-15 A b^3-5 a^3 B-45 a b^2 B\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx+\left (b^3 B\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {1}{15} \left (-9 a^2 A-23 A b^2-35 a b B\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx-\frac {1}{15} \left (-8 a^2 A b+8 A b^3-5 a^3 B-10 a b^2 B\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (b^3 B \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{\sqrt {a+b \sec (c+d x)}} \\ & = \frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\left (\left (-8 a^2 A b+8 A b^3-5 a^3 B-10 a b^2 B\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 \sqrt {a+b \sec (c+d x)}}+\frac {\left (b^3 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{\sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2 A-23 A b^2-35 a b B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 b^3 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\left (\left (-8 a^2 A b+8 A b^3-5 a^3 B-10 a b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2 A-23 A b^2-35 a b B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \left (8 a^2 A b-8 A b^3+5 a^3 B+10 a b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 b^3 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A+23 A b^2+35 a b B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a (8 A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 a A (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 8.76 (sec) , antiderivative size = 616, normalized size of antiderivative = 1.80 \[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {(a+b \sec (c+d x))^{5/2} \left (\frac {2 \left (34 a^2 A b+30 A b^3+10 a^3 B+90 a b^2 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{\sqrt {b+a \cos (c+d x)}}+\frac {2 \left (9 a^3 A+23 a A b^2+35 a^2 b B+30 b^3 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{\sqrt {b+a \cos (c+d x)}}+\frac {2 i \left (9 a^3 A+23 a A b^2+35 a^2 b B\right ) \sqrt {\frac {a-a \cos (c+d x)}{a+b}} \sqrt {\frac {a+a \cos (c+d x)}{a-b}} \cos (2 (c+d x)) \left (-2 b (a+b) E\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \left (2 b \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )+a \operatorname {EllipticPi}\left (1-\frac {a}{b},i \text {arcsinh}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right ),\frac {-a+b}{a+b}\right )\right )\right ) \sin (c+d x)}{\sqrt {\frac {1}{a-b}} b \sqrt {1-\cos ^2(c+d x)} \sqrt {\frac {a^2-a^2 \cos ^2(c+d x)}{a^2}} \left (-a^2+2 b^2-4 b (b+a \cos (c+d x))+2 (b+a \cos (c+d x))^2\right )}\right )}{30 d (b+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x)}+\frac {(a+b \sec (c+d x))^{5/2} \left (\frac {2}{15} a (11 A b+5 a B) \sin (c+d x)+\frac {1}{5} a^2 A \sin (2 (c+d x))\right )}{d (b+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[((a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*((2*(34*a^2*A*b + 30*A*b^3 + 10*a^3*B + 90*a*b^2*B)*Sqrt[(b + a*Cos[c + d*x])/(a +
 b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/Sqrt[b + a*Cos[c + d*x]] + (2*(9*a^3*A + 23*a*A*b^2 + 35*a^2*b*B +
 30*b^3*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/Sqrt[b + a*Cos[c + d*
x]] + ((2*I)*(9*a^3*A + 23*a*A*b^2 + 35*a^2*b*B)*Sqrt[(a - a*Cos[c + d*x])/(a + b)]*Sqrt[(a + a*Cos[c + d*x])/
(a - b)]*Cos[2*(c + d*x)]*(-2*b*(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a
+ b)/(a + b)] + a*(2*b*EllipticF[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a
*EllipticPi[1 - a/b, I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)]))*Sin[c + d*x])
/(Sqrt[(a - b)^(-1)]*b*Sqrt[1 - Cos[c + d*x]^2]*Sqrt[(a^2 - a^2*Cos[c + d*x]^2)/a^2]*(-a^2 + 2*b^2 - 4*b*(b +
a*Cos[c + d*x]) + 2*(b + a*Cos[c + d*x])^2))))/(30*d*(b + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(5/2)) + ((a + b*
Sec[c + d*x])^(5/2)*((2*a*(11*A*b + 5*a*B)*Sin[c + d*x])/15 + (a^2*A*Sin[2*(c + d*x)])/5))/(d*(b + a*Cos[c + d
*x])^2*Sec[c + d*x]^(5/2))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 21.13 (sec) , antiderivative size = 4759, normalized size of antiderivative = 13.92

method result size
parts \(\text {Expression too large to display}\) \(4759\)
default \(\text {Expression too large to display}\) \(4779\)

[In]

int((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15*A/d/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(5/2)/(cos(d*x+c)+1)*(34*Ellip
ticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)-46*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),
(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*sec(d*x+c
)-18*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)+46*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+cs
c(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2
*sec(d*x+c)+3*((a-b)/(a+b))^(1/2)*a^3*sin(d*x+c)+9*((a-b)/(a+b))^(1/2)*a^3*tan(d*x+c)-23*EllipticE(((a-b)/(a+b
))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(co
s(d*x+c)+1))^(1/2)*b^3+17*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-23*EllipticF(((a-b)/(a+b))^(1/2)*(-cot
(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*a*b^2-9*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+23*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d
*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-18
*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*sec(d*x+c)+30*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+
c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x
+c)-9*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3+15*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-
(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3+9*EllipticE((
(a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*sec(d*x+c)^2-23*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b
)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)^2-9*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x
+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*sec(d*x+c)^2+18*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*sec(d*x+
c)-46*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3+9*(
(a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)*sec(d*x+c)+11*((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+c)*sec(d*x+c)+14*((a-b)/(a
+b))^(1/2)*a^2*b*sin(d*x+c)+3*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)*sin(d*x+c)+23*((a-b)/(a+b))^(1/2)*b^3*tan(d*x
+c)*sec(d*x+c)+14*((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)+34*((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+c)+15*EllipticF(((
a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)^2-9*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/
(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)^2+23*E
llipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*sec(d*x+c)^2+17*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec
(d*x+c)^2-23*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^
(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)^2)+2/3*B/d/((a-b)/(a+b))^(1/2)*(a+b*sec(
d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(3/2)/(cos(d*x+c)+1)*(-7*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2
*b*cos(d*x+c)+9*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1)
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+7*EllipticE(((a-b)/(a+b))^(1/2)*(-cot
(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*a^2*b*cos(d*x+c)-7*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-7*EllipticF(((a-b)/(a+b))^(1/
2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+
c)+1))^(1/2)*a^2*b*sec(d*x+c)+9*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(
1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*sec(d*x+c)+7*EllipticE(((a-b)/(a
+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)-7*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^
(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*sec(d*x+c)+((a-b)/(a+b))
^(1/2)*a^3*sin(d*x+c)-14*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(
d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+18*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(
d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*a*b^2+14*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-14*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d
*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2+6*
EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(cos(d*x+c)+1))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a
^3*sec(d*x+c)-3*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1)
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)+6*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(
d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(
1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-3*EllipticF(((a-b)/(a+b
))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+12*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a
-b)/(a+b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3+2*EllipticF(((a
-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*a^3-6*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*
(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3+8*((a-b)/(a+b))^(1/2)*a^2*b*sin(d
*x+c)+((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)+7*((a-b)/(a+b))^(1/2)
*a*b^2*tan(d*x+c))

Fricas [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(5/2), x)